

Line identification in Specview

Nicolas Moreau


LERMA, Observatoire de Paris

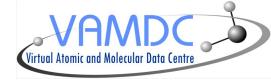
- Specview is a tool for 1-D spectral visualization
- It is written in Java, BSD-like licence, source code available on a cvs repository
- Main developer is Ivo Busko at Space Telescope Science Institute
- Specview supports :
 - a variety of FITS file formats
 - the Virtual Observatory SED format (XML only)
 - simple text format.
- Link : http://www.stsci.edu/institute/software_hardware/specview


SEVENTH FRAMEWORK

Interoperability in Specview

- Search and download spectra by querying Simple Spectra Access services (using VO SSA protocol)

	VO Do	wnload	- + ×
Registry Help			
Object			
Name:	Resolve	Resolver:	SIMBAD Names via CADC 🔻
Search region			
R.A. (hour):			Radius (arcmin): 10.0
Dec. (degree):			
Additional parameters			
Minimum wavelength (Angstroms):			Minimum time:
Maximum wavelength (Angstroms):			Maximum time:
Servers		Search	
Name	Status		Description
6dF Spectra	1		6dF DR3 Simple Spectra Access (#Optica
BeSS SSAP			Be Star Spectra SSAP (#Radio#Millimete
HST.FOS Spectra			Hubble Space Telescope Faint Object Sp
ELODIEinterp			Spectrum interpolator for the ELODIE libr
ELODIE			ELODIE archive
WUPPE			Wisconsin Ultraviolet Photo-Polarimeter E
CENCOS-WDS_DEEP			CENCOS-VVDS_DEEP SSA (VVDS Deep s
HST.GHRS Spectra			Hubble Space Telescope Goddard High R
HFA SSA			HyperLeda FITS Archive Simple Spectrum
Dace		111	Po Store Sportro (#Optical#LN/#)
	S	earch results	
		6dF Spectra	

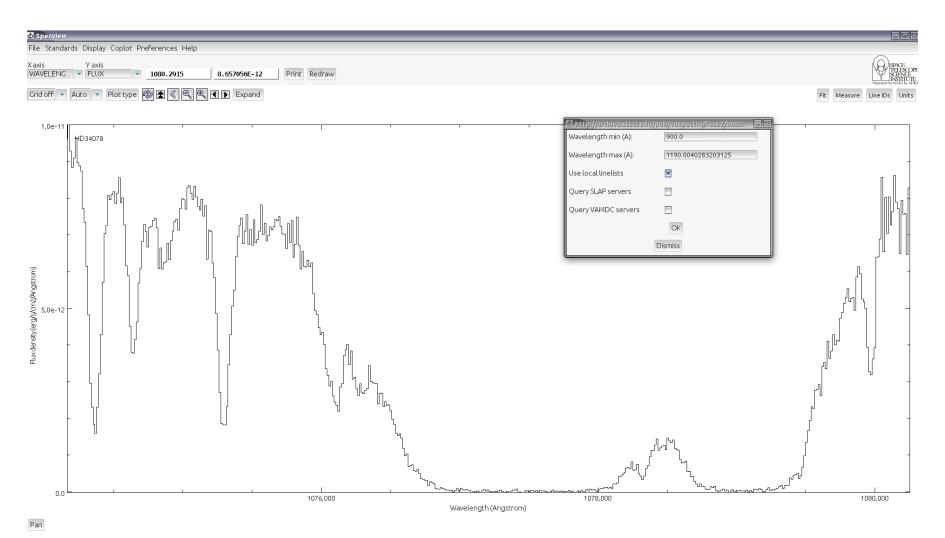

Interoperability in Specview

- Specview already implemented a line identification function :
 - by searching lines in local files
 - by using the VO Simple Line Access protocol to find lines in a range of wavelengths
- However SLAP services are scarce and quite limited
- This line identification functionnality has been extended to handle VAMDC services
- It can now query VAMDC nodes

Interoperability in Specview

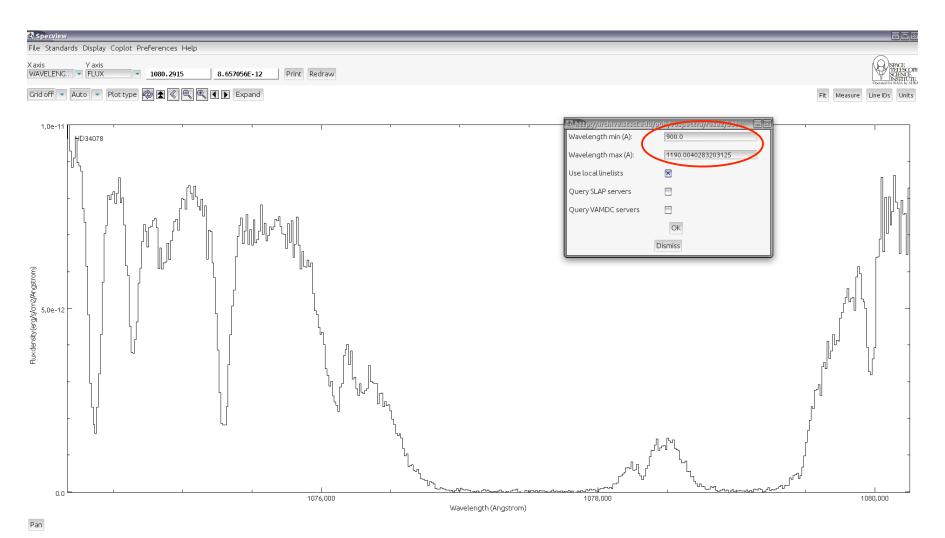
- Implementation has been done with Java APIs from M. Doronin to read XSAMS files

- Xml file is transformed into java objects
- They can be used as any other object in the code
- It has been integrated into the existing GUI
- List of queryable VAMDC nodes stored in a text file


- For now the query is only done on a range of wavelength (similar to SLAP)

- This functionnality is available since the 2.16 version of Specview (current is 2.17)

Query interface (1/2)



Query interface (1/2)

Query interface (2/2)

🛃 http://archive.stsci.ed	u/pub/vospectra/fuse2/b06801	- X
Wavelength min (A):	1075.21	
Wavelength max <mark>(</mark> A):	1075.29	
Use local linelists		
Query SLAP servers		
Query VAMDC servers	\mathbf{X}	
	OK	
	Dismiss	

User chooses :

- an interval of wavelengths
- where to look for data

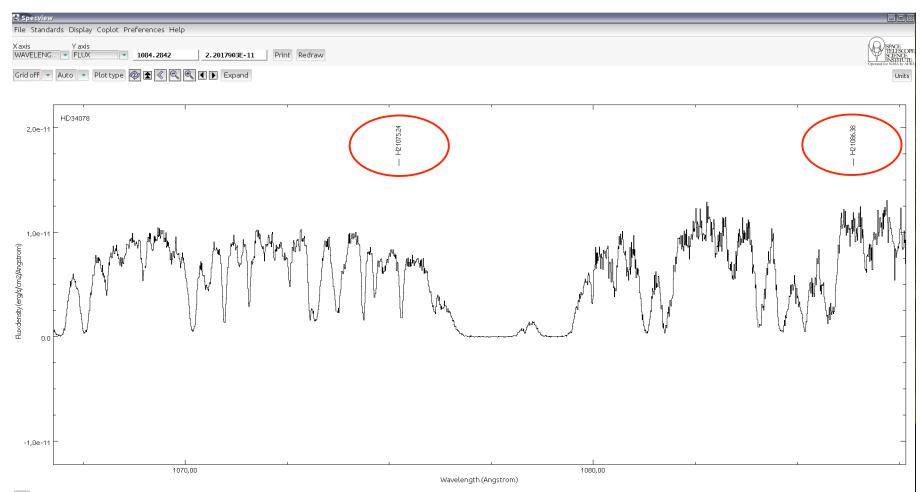
Results

			Molat Dat	abase (Test version)		
				· · · · · ·		
Set 1						
C C	∇	Wavelength	Wavenumbers	Energies	Frequencies	All Wavelengths
D		1075.26	theory: 93000.59 (1/cm)			1075.26 (A)
D		1075.29	theory: 92997.81 (1/cm)			1075.29 (Å)
D		1075.24	theory: 93002.36 (1/cm)			1075.24 (Å)
2		1075.29	theory: 92997.85 (1/cm)			1075.29 (Å)
2		1075.24	theory: 93002.36 (1/cm)			1075.24 (Å)
2		1075.29	theory: 92998.52 (1/cm)			1075.29 (Å)
2		1075.29	theory: 92998.38 (1/cm)			1075.29 (Å)
2		1075.24	theory: 93002.78 (1/cm)			1075.24 (Å)
2		1075.29	theory: 92997.93 (1/cm)			1075.29 (Å)
2		1075.21	theory: 93005.43 (1/cm)			1075.21 (Å)
2		1075.23	theory: 93003.17 (1/cm)			1075.23 (A)
)2		1075.29	theory: 92997.99 (1/cm)			1075.29 (Å)
2		1075.28	theory: 92999.19 (1/cm)			1075.28 (Å)
2		1075.23	theory: 93002.96 (1/cm)			1075.23 (Å)
2		1075.29	theory: 92998.39 (1/cm)			1075.29 (Å)
2		1075.24	theory: 93002.1 (1/cm)			1075.24 (A)
2		1075.25	theory: 93001.87 (1/cm)			1075.25 (A)
2		1075.28	theory: 92998.75 (1/cm)			1075.28 (Å)
2		1075.27	theory: 93000.08 (1/cm)			1075.27 (Å)
)2		1075.23	theory: 93003.22 (1/cm)			1075.23 (Å)

Results

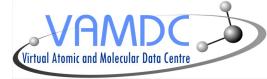
🖞 http://archive.stsci.eo	du/pub/vospectra/fuse2/b06	3010200000nvo4histfcal_vo.fits				- 0 🛛
File						
Molat						
Line list						
		Molat Data	abase (Test version)			
			· · · · ·			
Set 1						
ID	Wavelength	Wavenumbers	Energies	Frequencies	All Wavelengths	
HD	1075.26	theory : 93000.59 (1/cm)			1075.26 (A)	
HD	1075.29	theory: 92997.81 (1/cm)			1075.29 (A)	
HD	1075.24	theory: 93002.36 (1/cm)			1075.24 (A)	
H2	1075.29	theory : 92997.85 (1/cm)			1075.29 (A)	
H2	1075.24	theory : 93002.36 (1/cm)			1075.24 (A)	
H2	1075.29	theory : 92998.52 (1/cm)			1075.29 (A)	
H2	1075.29	theory : 92998.38 (1/cm)			1075.29 (A)	
H2	1075.24	theory : 93002.78 (1/cm)			1075.24 (A)	
H2	1075.29	theory: 92997.93 (1/cm)			1075.29 (A)	
H2	1075.21	theory : 93005.43 (1/cm)			1075.21 (A)	
D2	1075.23	theory : 93003.17 (1/cm)			1075.23 (A)	
D2	1075.29	theory: 92997.99 (1/cm)			1075.29 (A)	
D2	1075.28	theory: 92999.19 (1/cm)			1075.28 (A)	
D2	1075.23	theory : 93002.96 (1/cm)			1075.23 (A)	_
D2	1075.29	theory: 92998.39 (1/cm)			1075.29 (A)	_
D2	1075.24	theory: 93002.1 (1/cm)			1075.24 (A)	_
D2	1075.25	theory: 93001.87 (1/cm)			1075.25 (A)	_
D2	1075.28	theory : 92998.75 (1/cm)			1075.28 (A)	
D2	1075.27	theory: 93000.08 (1/cm)			1075.27 (A)	_
D2	1075.23	theory: 93003.22 (1/cm)			1075.23 (A)	
Select all Unselec	t all Constant height					
Add set						
0 lines selected	Draw Erase selection	Erase all Dismiss				

Results



			Molat Dat	abase (Test version)		
				· · · · ·		
Set 1						
C C	∇	Wavelength	Wavenumbers	Energies	Frequencies	All Wavelengths
D		1075.26	theory: 93000.59 (1/cm)			1075.26 (A)
D		1075.29	theory: 92997.81 (1/cm)			1075.29 (Å)
D		1075.24	theory: 93002.36 (1/cm)			1075.24 (Å)
2		1075.29	theory: 92997.85 (1/cm)			1075.29 (Å)
2		1075.24	theory: 93002.36 (1/cm)			1075.24 (Å)
2		1075.29	theory: 92998.52 (1/cm)			1075.29 (Å)
2		1075.29	theory: 92998.38 (1/cm)			1075.29 (Å)
2		1075.24	theory: 93002.78 (1/cm)			1075.24 (Å)
2		1075.29	theory: 92997.93 (1/cm)			1075.29 (Å)
2		1075.21	theory: 93005.43 (1/cm)			1075.21 (Å)
2		1075.23	theory: 93003.17 (1/cm)			1075.23 (A)
)2		1075.29	theory: 92997.99 (1/cm)			1075.29 (Å)
2		1075.28	theory: 92999.19 (1/cm)			1075.28 (Å)
2		1075.23	theory: 93002.96 (1/cm)			1075.23 (Å)
2		1075.29	theory: 92998.39 (1/cm)			1075.29 (Å)
2		1075.24	theory: 93002.1 (1/cm)			1075.24 (A)
2		1075.25	theory: 93001.87 (1/cm)			1075.25 (A)
2		1075.28	theory: 92998.75 (1/cm)			1075.28 (Å)
2		1075.27	theory: 93000.08 (1/cm)			1075.27 (Å)
)2		1075.23	theory: 93003.22 (1/cm)			1075.23 (Å)

VAMDC Virtual Atomic and Molecular Data Centre


Plot

Pan

Future evolutions

- More query parameters
- Handle request on large amount of data
- Search for services in registry instead of local file
- Displaying more detailed informations about each line
- Exporting data into customizable formated files
- It implies to build a GUI dedicated to VAMDC data

